

High Sensitivity Tools for Vaccine Development and Quality

Kevin Dahl, PhD and Linda Kidder, PhD Hosted by Julie Nguyen and HORIBA Scientific

particlesellc.com

Kevin Dahl, PhD - 20 years of particle and spectroscopic experience in pharma

Technology Consulting

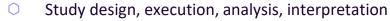
Instrumentation, laboratory

Data Consulting

Reanalysis, interpretation, CMC support

Document Consulting

Drafting and Review



Method Consulting

Development, Optimization, Qualification, Validation

Experimental Consulting and Services

Training Services

Selected Instruments

kd@particlesellc.com

• The reward for work well done is the opportunity to do more.

- Jonas Salk

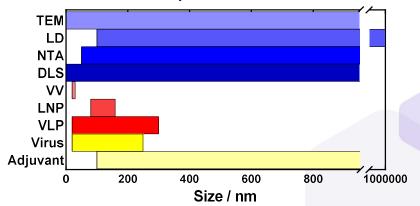
Challenges in Vaccine Development

- Discovery
 - Rapid viral evolution antigenic shift
- Formulation
 - Stabilization/delivery
- Storage and transport
 - Freeze-thaw
- Stability (ICH Q5C)
 - Toxic/immunogenic species
- In-use stability
 - Thaw/recon -> patient
- Release testing
 - Quality (ICH Q6B/Q6A)

Particulate and Spectroscopic Analytical Tools

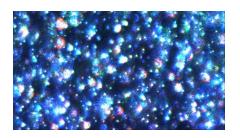
Regulatory

- Modern vaccines inhabit a gray area between biotherapeutics (DS) and small molecule suspensions (DP)
 - Drug substance covered by ICH Q5A(R1) (safety)
 - Above deal with viral contamination/clearance, concentration, etc.
- What about drug product characteristics as CQAs?
- WHO Expert Committee on Biological Standardization, DRAFT Evaluation of the quality, safety and efficacy of messenger RNA vaccines for the prevention of infectious diseases: regulatory considerations, 2021


Particle size distribution (purity, consistency, safety)

light scattering such as dynamic or static light scattering; nanoparticle tracking analysis; electron microscopy; size-exclusion chromatography

Vaccines and Analytics

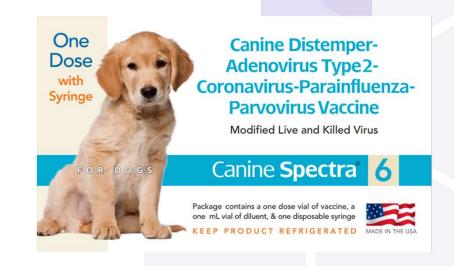

- Vaccine Delivery
 - Live Attenuated or Inactivated Virus Polio
 - Adjuvanted Nuvaxovid
 - Lipid Nanoparticle (LNP) Pfizer/Moderna
 - Viral Vector/AAV J&J
 - Virus Like Particle (VLP) Gardasil
- Relevant Size Ranges and Common Techniques
 - Cryo-TEM
 - DLS
 - NTA
 - Laser Diffraction (LD)

PARTICLES!

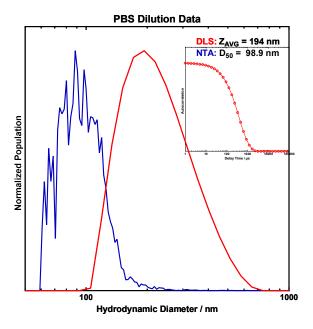
Nanoparticle Tracking

- Based on video taken of point-scattering from particles
 - O Particle movement in suspension described by Brownian motion:

$$D_h = \frac{k_B \mathbf{T}}{3\pi \mathbf{\eta} D_m}$$


- \bigcirc Light scattering techniques measure hydrodynamic radius (D_h)
- Strengths
 - Polydisperse (aggregated) samples
 - Single-particle (number-based) technique
 - Less sensitive to oversized material (relative to DLS)
 - Governed by ISO 19430, ASTM E2834-12

Experimental: Vaccine Analytics

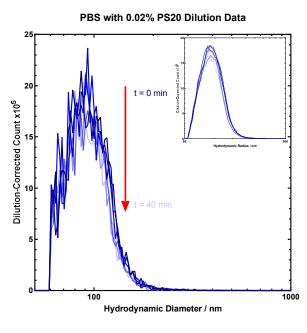

- Lyophilized sample with included diluent (1 mL)
 - Modified live virus with adjuvant (proprietary), sub-Q delivery, pH 6-8
 - Reconstitution after aseptic diluent addition, "SHAKE WELL"
- Sample diluted 10⁵ in PBS
 - Concentration range match for NTA instrument
- 3-laser NTA system (445/520/635 nm)
 - 350 μl sample stirred in cuvette
 - Practical limit of ~50 nm
 - Fluorescence capable

Reference: https://www.durvet.com/product/canine-spectra-6/

How things started:

- DLS results show a broad peak centered at 200 nm
 - Width suggests polydisperse sample not optimal for DLS
 - Resolving power is ~x3/x5 for two modes
 - Intensity-based distribution r⁶ intensity dependence
- Number-based NTA shows a single mode at 100 nm
 - DLS signal dominated by a small amount of larger debris
 - Reconstitution/dilution?
 - NTA signal characterizes main population in sample

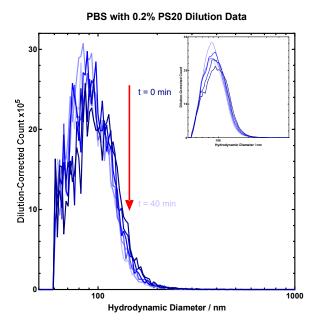
NTA Results: Dilution Only



- 40 min collection time for six replicates
 - 50% decrease in particle concentration after 40 min
 - Access to concentration is critical!
 - D90 of 140 nm (no prominent aggregation observed)
- Change in sample indicates instability
 - Dilution in PBS destabilizes the formulation

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS	1	5349	98.9	136.3	1.0E+13
Spectra 6 - PBS	2	4531	99.9	139.2	8.6E+12
Spectra 6 - PBS	3	4067	99.9	140.0	7.8E+12
Spectra 6 - PBS	4	3355	100.6	137.9	6.4E+12
Spectra 6 - PBS	5	3134	99.9	139.5	6.0E+12
Spectra 6 - PBS	6	2730	100.0	142.9	5.2E+12
	Average	3861	99.9	139.3	7.4E+12
	%RSD	25.3	0.5	1.6	25.3

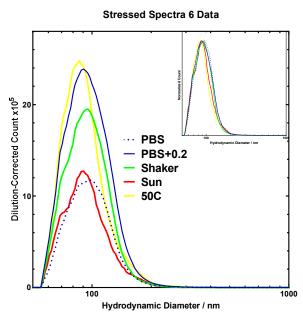
NTA Results: Dilution w/ 0.02% PS20



- Addition of 0.02% PS20 with PBS
 - PS20 should provide surface protection of unstable charge
- 40 min collection time for six replicates
 - ~15% decrease in particle concentration after 40 min
 - D90 has dropped to 132 nm

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS+0.02% PS20	1	5981	97.9	134.4	2.3E+13
Spectra 6 - PBS+0.02% PS20	2	5786	97.4	133.6	2.2E+13
Spectra 6 - PBS+0.02% PS20	3	5762	96.7	133.0	2.2E+13
Spectra 6 - PBS+0.02% PS20	4	5123	96.3	131.7	2.0E+13
Spectra 6 - PBS+0.02% PS20	5	5121	94.8	129.8	2.0E+13
Spectra 6 - PBS+0.02% PS20	6	5003	94.5	131.2	1.9E+13
	Average	5463	96.3	132.3	2.1E+13
	%RSD	7.79	1.44	1.29	7.79

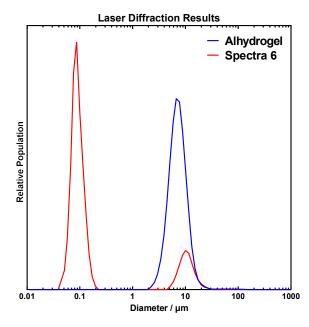
NTA Results: Dilution w/ 0.2% PS20



- Addition of 0.2% PS20 with PBS
- 40 min collection time for six replicates
 - No decrease in particle concentration after 40 min
 - O D90 135 nm
 - PS20 reversing "hidden" aggregation?
 - Distribution width shifting and narrowing

Sample	Rep	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS+0.2% PS20	1	7665	104.1	143.9	2.9E+13
Spectra 6 - PBS+0.2% PS20	2	7852	100.6	140.6	3.0E+13
Spectra 6 - PBS+0.2% PS20	3	8009	97.2	135.2	3.1E+13
Spectra 6 - PBS+0.2% PS20	4	7599	96.0	133.5	2.9E+13
Spectra 6 - PBS+0.2% PS20	5	7904	93.8	129.8	3.0E+13
Spectra 6 - PBS+0.2% PS20	6	7100	94.4	129.6	2.7E+13
	Average	7688	97.7	135.4	2.9E+13
	%RSD	4.24	4.07	4.28	4.24

NTA Results: Additional Work



- Three stress conditions tested for 48 hours
 - Shaker plate, direct sunlight, 50 °C
- Sample tolerates shaking
- Sample tolerates elevated temperature well
- Sample does not tolerate direct sunlight (UV)

Sample	Cond.	Counts	D50 (nm)	D90 (nm)	Conc. (part/mL)
Spectra 6 - PBS	None	3861	99.9	139.3	7.4E+12
Spectra 6 - PBS+0.2% PS20	None	7688	97.7	135.4	2.9E+13
Spectra 6 - PBS+0.2% PS20	48 hr. Shake	6693	98.9	133.6	2.6E+13
Spectra 6 - PBS+0.2% PS20	48 hr. Sun	3648	93.6	139.6	1.4E+13
Spectra 6 - PBS+0.2% PS20	50C	6828	91.2	137.4	2.6E+13

In Addition...

- Laser diffraction records scattering angle vs.
 intensity of scatter from suspension
 - Widely used for powder/high conc. suspensions
 - Minimum volume ~5 mL
 - O Volume-weighted (r³) distribution, can go below 100 nm
- LD is applicable to PS determination in vaccines
 - Products contain high concentration of particles
 - Spectra 6 product shows band at 10 µm in addition to adjuvant band
 - Likely due to incomplete reconstitution
 - Explains poor DLS performance for same product!

- Vaccines are analytically 'different'
 - Biologic product necessitates specific testing
 - Particles are the product, testing with new technologies
- Incorporation of particle techniques
 - Directly measure CQA of Drug Product
 - Useful in formdev, stability, transport, and in-use studies
 - Can be readily worked into product release workflow
- Kevin Dahl, PhD: kd@particlesellc.com